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Abstract-This paper deals with the plane elastostatic problem of an infinite wedge, subjected to arbitrary
surface tractions. and cracked along the wedge angle bisector. The problem is reduced to a single Fredholm
integral equation. which is solved numerically for normal loads on the crack faces and various loads on the
wedge faces. It is shown that the crack tip intensity factor depends strongly on the wedge angle. An
approximation to a half plane with a notch of finite angle. cracked at its apex. is also obtained.

I. INTRODUCTION

In this paper, the problem of an infinite elastic wedge subjected to arbitrary surface tractions,
with a crack along the wedge angle bisector, emanating from the wedge apex, is considered. The
crack faces are subjected to normal loads. Of principal interest in this investigation is the stress
intensity factor at the crack tip due to the applied loads.

The wedge geometry has been treated extensively in the literature. Srivastav and Narain[l]
considered this same geometry with a crack on the wedge angle bisector, but no loads on the
wedge faces. Muki and Westmann[2] considered a wedge with a crack propagating along the
bond line emanating from the notch tip. However, they do not consider loading of the wedge faces.
In a recent paper by Erdogan and Arin [3], the crackless wedge is treated for a class of contact
problems in which the wedge is subjected to external loads through the forced contact with a rigid
indenter of arbitrary profile.

In all of the above works, the solution was obtained through the use of Mellin transforms to
reduce the boundary value problem to dual integral equations. A modification of the method used
by Muki and Westmann is used here. The boundary conditions are represented in terms of the
Mellin inverse transform of the 2-dimensional Airy stress function and a dual integral equation is
written along the line of the crack. This dual integral equation is then reduced to a single
Fredholm equation of the second kind, which is solved numerically.

The Fredholm integral equation is written for general loads on both the crack and wedge
faces. The particular case of uniform normal loads is carried out in detail for various wedge
angles and values for the stress intensity factor are obtained. By using the analytical results for an
appropriately loaded infinite wedge, an approximation to a half plane with a cracked notch is
obtained.

2. FORMULATION OF THE PROBLEM

This analysis considers an infinite elastic wedge occupying the region in the (r, 6) plane:
Os r < 00; - 60 s 6 s 60 ; 0 < 60 < 1T. The faces of the wedge are subjected to normal and shearing
tractions, while the crack is loaded normally (see Fig. I); due to the symmetry about 6 = 0, only
the problem for 6 > 0 is considered. The boundary conditions are given below.

786 = N(r)H(a - r)

T8r = S(r)H(a - r)

788 = -p(r)

U8=V=0

78r = 0

where H(x) is the Heaviside function.

615

6 = 60 , OSr<oo

6 = 80 , OSr<oo

6 =0, Osrsl

6=0, lsr<oo

8=0, OSr<oo

(1)

(2)

(3)

(4)

(5)
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Fig. I. Geometry and loading for an infinite wedge.

Using the Airy stress function in polar coordinates, the stresses and displacements can be
written in terms of the Mellin transform of the stress function as follows:

(6)

(7)

1 L -rTfHJ =~ s(s - 1)</>r-Sds
TTl B,

(8)

I L{ - d2~}r~SdS2I-/-U,;: 21-/-U = -2' U(3 - K)(S -If+4(s -I)]</> +[W - K) -I]-d2 --
TTl B, 8 S

21-/-u6 ;: 21-/-v = 2~iL{U4(2s2-S+ I) - (3 - K)(S _1)2]~t +[1- W- K)]:~f}(;: ~;S

~(s, 8) == f </>(r, 8)rs~2 dr

(9)

(10)

(II)

K = 3- 411 plane strain

= (3 - 11)/(1 + II) plane stress

(l2a)

(l2b)

where II is Poisson's ratio.
The nature of the geometric singularities occurring at the wedge apex has been thoroughly

studied (see for instance Bogy[4]); hence, the following regularity conditions are prescribed for
the stresses at critical points.

aE(-I,l),r~O+

r~oo.

(l3a)

(l3b)

(Be)

The behavior of the stresses at r = 0+ and at r = 00 determines the strip of regularity in which the
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Bromwich path must lie in eqns (6)-(10). From eqns (l3a, c) and the definition of the Mellin
transform, eqn (11), it is found that

R(s)E[a-l,O) (14)

in eqns (6)-(10).
The biharmonic equation for the stress function reduces to the elementary ordinary

differential equation for the transformed stress function given below.

(15)

3. REDUCTION TO A DUAL INTEGRAL EQUATION

The following solution of eqn (15) is chosen such that the boundary conditions on the wedge
face, eqns (I) and (2), are satisfied automaticaIly.

cb(s, 8) = cb",(s, 8) +A(s) sin (1I"S ){(s + 1) sin [(s -1)(8 - ( 0)]

- (s - 1) sin [(s + 1)(8 - ( 0)]} +B(s) sin (1TS)

X {cos [(s - 1)(8 - ( 0)] - cos [(s +1)(8 - 80m (16a)

- 1 {[ - - (s + 1)
cP",(s, 8) = s4(s, (

0
) S(s) cos [(s + 1)00 ] +N(s) (s - 1)

x sin [(s + 1)80]] cos [(s -1)0] - [5(S) cos [(s -1)80]

+N(s) sin [(s -1)00]] cos [(s + 1)8]} (l6b)

4(s, ( 0) = s sin (280) +sin (2s80 ) (16c)

N(s) = rN(r)r' dr (l6d)

5(s) =rS(r)r' dr, (l6e)

where cb...(s, ( 0) is the solution to the crackless wedge with the loading given in eqns (I) and (2).
This problem has been treated before (see for instance [4, 5]) for normal wedge loads and the
solution is easily extended to both normal and shear loading.

Upon differentiating eqn (16a), substituting into eqn (7) and applying the shear stress boundary
condition, eqn (5), one can solve for A(s) in terms of B(s),

A(s) = - B(s) [(s -1) sin [(s - 1)60] - (s + 1) sin [(s + 1)00 ]]

(s + 1)(s -1) cos [(s -1)60] - cos [(s +1)80]

Introduce the unknown,

2B(s) sin (1TS)
D(s) = ( 1)' (8) . (8 )4(S, ( 0 )s + SIn S 0 SIn 0

(17)

(18)

and substitute eqn (18) first into eqn (17), then into eqn (16a) and differentiate appropriately for
substitution into eqns (8) and (10). The displacement and stress boundary conditions on 8 = 0,
eqns (3) and (4) respectively, can therefore be written as the dual integral equation in D(s) given
below.

__1_. f D(sV' ds = 0
2m lB, l<r<oo (19)
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1 f - -
= hi JB, [o/N(S, ()o)N(s) +o/s(s, 8)5(s)]r- S

-
1ds +p(r), 0< r < I

( 8)
- $2 COS (290 ) - cos (2$90 ) +1- S2

1/ S, 0 - ,i(s, 8
0

)

,I, ( () = -2[s cos (s80 ) sin (80 ) +sin (s80) cos (80)1
'l'N s, 0 ,i(s, 8

0
)

,I, ( D) = 2(s - 1) sin (sOo) sin (00 )

'l'S S, 110 ,i(s, (
2

)

(20a)

(20b)

(20c)

(20d)

Noting that 1/(s) - tan ('ITs) as lsi ~ 00, eqn (20a) can be rewritten to obtain the dual integral
equation,

-21. f D(s)r- S ds = 0,
'ITt JB, l<r<oo (21)

-21 . [ hD(s) tan ('lTs)r- S
-
1ds

'ITt JB,

=2- 1. [ ~sD(s)['I1(s,8o)-tan('lTs)]r-s-1ds
'lT1 JB,

O<r<1.

(22)

4. SOLUTION OF THE DUAL INTEGRAL EQUATION

Single pairs of dual integral equations involving Bromwich integrals have been considered
before, specifically in Ref. [1]. In a similar manner, introduce the following Mellin transform [6],
such that eqn (21) is satisfied automatically,

D(s) = B(!, s)f g(t)r-~ dt (23)

where B(z, w) is the Beta function and g(t) is a function to be determined. This form for D(s) is
seen to satisfy eqn (21) exactly[6], Now note the identities, also from[6],

BG, s) tan ('ITs) = BG, ~ - s)

1 r -, _f' g(t)
2'IT;)B,D(s) tan ('lTs)r ds- 10 (r_t)1/2 dt.

(24)

(25)

Thus, upon integrating eqn (22) with respect to r from 0 to r and with the use of eqns (23)-(25),
the resulting equation is obtained,

f'( g(~~1/2dt=2-1. [ D(s)[1/(s,Oo)-tan('lTs)]r-'dsJo r- ?Tl JB,

- -21. [ 2S- I [o/N(S, 80)N(s) + I/1s(s, 80)8(s)]r-' ds +P(r)
'lT1 JB,

P(r) =f p(r) dr.

O<r<1 (26a)

(26b)

Equation (26a) can be viewed as an Abel integral equation with the right hand side considered
known. Employing the well known solution[7], eqn (23) and the relations from [6] and [8},



O<t<I
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respectively,

d i' u-
o

-0-1/2 I
dt 0 (t_u)I/2 du =-st B(:1,-s)

B(1 1) =rmr(1) =2
2, rm

sBG, -s)BG, s) = t -t )'an 11'S

the following Fredholm integral equation can be written for g*(t) = t"2g(r).

i
l (U )dU11'g*(t) = 11' 0 g*(u)K t,80 u+ Fc(t) +F",(t, 80),

-1 i ~o ds
K(~,80)=-2' [T/(s,80)-tan(11's)]t ( )

11'1 B, an 11'S

F (t) = 2tl/2i' p(u) du
c 0 (t-U)112

F",(t, 80 ) =~ ( 2[!/JN(S, 80)'N(s) + !/Js(s, 80)5(s)]B(4, -sWo ds.
11'1 lB,
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(27)

(28)

(29)

(30a)

(30b)

(30c)

(30d)

A simple residue calculation shows that the stresses are O(r-o"-I) as r~ 0+, where s* is the
first zero of A(s, 80) to the left of zero, eqn (16c). It is easily shown that as 80 increases from 0 to
11', s* increases from -~ to -!, Thus, the parameter a given in eqn (13a) takes on values between
-~ and!, and the Bromwich path is chosen to be (-;1- ;(0) to (-;1 + ;(0) for all values of 80 , With
this choice, the complex line integrals, eqns (30b, d) can be written as real semi-infinite integrals,
and can be evaluated numerically, using a standard Gaussian quadrature.

The following asymptotic behavior of K(E,80) is obtained from a residue calculation,

K(~, 80) = O(~-o')

= O(~o')

(3Ia)

(3Ib)

where s* is defined as above.
If eqn (30a) is solved numerically for g*(t) and this result successively substituted into eqns

(23), (18), (17), (16), and finally into eqns (6)-(10), the stress and displacement fields can be
determined.

The quantities of physical interest are the normal tractions on 8 = 0, r E (1, (0) which yield the
stress intensity factor, and the crack opening displacement, (V)e-o, rE [0,1]. Using the relation
given in eqn (25) and substituting as indicated above,

( ) 1i l

g(t) d il

()K- (t ",) -3/2 d (W)( 8)
T/HI r,O = -4 0 (r _ t)3/2 t + 0 g t r, l1o t t + T/HI r, I<r<oo (32a)

(32b)

where T:;)(r,O) is the first term on the right hand side of eqn (20a). The last two integrals in eqn
(32a) are bounded as r~ 1+ and only the first integral is singular at this point. Integrating by parts
yields the result,

(33)

In the usual manner, the crack tip stress intensity factor, K, is defined as

IlSS Vol. 13. No. 7-8
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K = lilTl [2(r - 1)]1/2T86 (r, 0) = _!(2)1/2g(l).._1 (34)

In this dimensionless formulation, r is normalized with respect to the crack length; the only
characteristic length in the problem is "a". An increase in this parameter corresponds to
decreasing the crack length and vice versa.

Substituting successively again as indicated above and using the identity[6],

the crack opening displacement,

O<x<1

I<x<oo (35)

- II g(t)(21L)v(r, 0) - - • (t _ r)I/2 dt,

is obtained.

O<r< I, (36)

5. NUMERICAL SOLUTION AND RESULTS

The integral equation eqn (30a) is solved by approximating the finite integral from u = 0 to
u = 1 by an N-pt. Gaussian quadrature (N = 16 was used for all computations). The collocation
points, t;, are chosen to be the same as the integration points, u" and are given by

i = I, ... , N (37)

where the Xi are the N zeros of PN(x), the Nth Legendre polynomial, in the interval (-1,1). The
weights, w" for the quadrature formulas are given by

i= I, ... ,N. (38)

Thus, a linear system is obtained with the forcing vector F = {Fe(t;) + Fw(t;)} and the solution
vector G = {g*(tj)}, i = L ... , N.

(a) Constant normal load applied over crack and wedge faces
One particular case which was considered for detailed numerical study was that of a constant

normal load, with unit intensity, applied over the crack as well as on the wedge faces; i.e.
p(r) = N(r) = -I and S(r) = O. This gives

Fe(t) = -4t

F. (t) = -a f I/JN(S, 80) B(! - ) (~)' d
w 1Ti JB

r
(s + I) 2, S t s.

(39a)

(39b)

As was the case with the kernel K(~, 80), the Bromwich integral in eqn (39b) is evaluated along the
line (-~- ioo)--+(-~+ ioo).

Intensity factors were computed for angles 80 ranging from 60° to 179.95° and" a" ranging
from 0.0 to 10.0. Note that a = 0.0 corresponds to no load on the wedge faces. The results are
given in Table 1. Kc represents the intensity factor due to loading on the crack faces and Kw

represents the intensity factor due to loading on the wedge while the total stress intensity factor is
K =Kc+Kw •

The results for several limiting cases were compared to previous results with considerable
accuracy. The case 80 = 90° corresponds to the loaded half plane with a loaded edge crack. When
N(r) = S(r) = 0.0 we have the stress free half plane with a loaded edge crack. The latter problem
was solved by Sneddon and Das[9] and the intensity factor arrived at by them was K = 1.1215
compared to the presently computed value of K = 1.1207. For N(r) = I and S(r) = 0.0 and
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Table 1. The results for a cracked elastic wedge loaded normally on the faces from r =0 to r =a. The quantities
shown are the stress intensity factors at the crack tip, (r, 8) =(I, 0), for various! wedge angles, 80 • Kc is the intensity

factor due to the crack load, p(r)" -1 and K w is that due to the wedge loading, N(r)" -1. K =Kc +K w

~
0.0 2.0 4.0 6.0 8.0 10.0

K~ K K K K K K K K K K~} r .. .. .. .. w

60' 1. 5928 -2.0906 -.4977 -2.2000 -.6073 -2.1894 -.5966 -2.1/07 -.5799 -2.1453 -.5615

75' 1.3805 -1. 2879 .0206 -1. 4903 - .1818 -1. 5423 -.2337 -1. 5606 -.2521 -1.5676 -.2590

90' 1.1207 - .7544 .3662 - .9402 .1805 -1. 0096 .1111 -1. 0453 .0755 -1. 0669 .0530

1115' 1. 0117 - .3257 .6860 - .3996 .6121 - .4136 .5981 - .4111 .6006 - .4021 .6090

120" .9491 .0476 .9968 .1411 1. 0902 .2386 1.1878 .3298 1. 2 789 .4138 1.3629

135' .9167 .3418 1. 2585 .5955 1. 5162 .8181 1. 7348 1. 0099 1. 9266 1.1824 2.0991

150' .9027 .5346 1. 4373 .9100 1. 8127 1. 2184 2.1211 1.4863 2.3890 1.7263 2.6290

165" .8<Je4 .6328 1.5312 1. 0697 1. 9682 1. 4256 2.3240 1.7336 2.6320 2.0090 2.9075

179.95' .8979 .6601 1. 5580 1.1142 2.0121 1. 4832 2.3811 1. 8022 2.7001 2.0873 2.9853

_~____-----I...-

*1. e. K - O,K=K
c

' This is the same K for all value::; of a.
w c

On = 90°, it is possible to compute by elementary means [10] the value of the stresses along
y = 0 due to a uniform load from y = - a to y = a on the surface, x = 0, of the half plane. In
particular one can obtain the stress normal to y = 0 (0 =0 in our problem), Ty(X), in the range
o$ x $ 1. Then the corresponding loading function would be

F. (t) = - 2t 1/2 it Ty(U) du
w o (t-U)1/2'

(40)

see eqn (30c). Comparison of values of Fw(t) obtained from eqn (40) differed by only 1.5% from
those obtained from eqn (39b) with 00 = 90°. The special case of S(r) = 1.0 and N(r) = 0.0 was
also computed and compared to the analytical solution of a half plane with symmetric shear
loading. The agreement in this case was better than 0.01%.

The other appropriate limiting case is 00 = 180°, or that of a normally loaded semi-infinite slit
in an infinite medium (N(r) = per) = 1.0, and S(r) = 0.0). The solution to this problem is easily
obtained in closed form using the method of Ref. [11], and is given by

21/2 i,+a 2K =- t- I
/
2 dt = -[2(1 +a)]I/2,

11" 0 11"
(41)

for a uniform unit load applied from the crack tip to a distance of (1 +a) from the tip. In
particular, for a = 10.0, eqn (41) gives K =2.9879 compared to the presently computed value of
K = 2.9853 for 00 = 179.95°.

The most striking feature of the results in Table 1 is the fact that there is a critical angle Oe,
such that when 00 < 8e , the wedge loads have a net compressive effect on the crack tip, exhibited
as Kw < O. When 80 > 8e , however, the wedge loads enhance the tensile crack load by inducing a
Kw > O. 8e depends upon the parameter "a" and for all "a" considered, was between 105° and
120°. This phenomenon reflects itself in another critical angle, also dependent upon "a", which
represents a zero net stress at the crack tip, Le. Kw = - Kc. This critical angle was found to lie
between 60° and 90° for the cases considered.

It is also of interest to note that the contour integral, K(~, ( 0 ), eqn (30b), can be approximated
by two one-term residue approximations for small and large ~ respectively. Fw(t) may be
approximated, similarly by a one-term residue approximation for small t only. This
approximation was carried out numerically for 00 = 120° and "a" = 10.0, using the critical value,
~e = 10.0, as the boundary of approximation between small and large ~ and K(~, ( 0). The resulting
intensity factors are Kw = 0.3999, Kc = 0.8503, K = 1.2502, and should be compared to results in
Table 1.

One can also obtain from these results the stress intensity factor corresponding to the loading

N(r) = 0
= -1
=0

O<r<b
b<r<c
c<r<oo (42a-c)
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S(r) = 0 O<r<oo (43)

by subtracting the stress intensity factor given in Table 1for a =1from that given for a =c. In
this manner the value of "b" can be found for a given "c", which yields a zero stress intensity
factor.

(b) Approximation to problem of a half plane with finite cracked notch
It is of interest that an approximation for a half plane with a finite notch cracked at the apex,

see Fig. 2, can be obtained from the present work when c~ 1. The approximation is based on an
analysis of the dependence of the intensity factor at the crack tip upon the halfnotch angle.
'" = 1T - 60 , in the unbounded medium, by varying "a" with 60 such that c remains constant.
The uniform tensile load applied at infinity is equivalent to the loads p(r) = -1.0,
N(r) =-cos2 (80), and S(r) =- sin (80) x cos (80), taking u =1.0. Intensity factors were
calculated for various half-notch angles, "', with c :::: 10.0. The results are given in Table 2 and
Fig. 3 (solid curve).

It is seen from these results for the infinite wedge, which are plotted as the solid curve in Fig.
3, that the stress intensity factor increases from the value given by eqn (41) with a = 10 to a
maximum at about'" = 52° and then decreases rapidly. When the limit of 90" is reached, the curve
properly approaches the value, K90 :::: 1.1215 for a half plane with a crack. The values of the stress
intensity factor do not change appreciably from a constant value when the half-notch angle is less
than 30°. Now for the half-plane problem with a = 10 and '" > 60° it is reasonable to assume that
the influence of the free surface is relatively small and becomes smaller for larger angles; thus the
solid curve should be adequate for the half-plane problem for 60° < '" < 90°. One can now
approximate the effect of the free surface for smaller angles by the dashed curve shown in Fig. 3.

Fig. 2. Geometry and loading for a tensile specimen with a notch; 60 =11' - tft, c = a cos (tft).

Table 2. Results for approximation to the half-plane with a cracked notch. K. is the intensity factor due to the crack
load, p(r) = I. K N is that due to the normal load, N(r) =-cos' (tft). K s is due to the shear load. S(r) =sin (c/J) cos (c/J).

K=K.+KN +Ks

K
~ K

S
K

c

I' .8979 2.0866 .0009 2.9854

5' .8979 2.0688 .0220 2.9888

10' .8981 2.0123 .0898 3.0002

IS' .8984 1.9173 .2049 3.0207

22.5' .8998 1. 7059 .4640 3.0698

30' .9027 1.4230 .8134 3.1391

37.5' .9080 1.0921 1.2204 3.2205

45' .9167 .7480 1. 6311 3.2958

52.5' .9299 .4333 1. 9706 3.3339

60' .9491 .1886 2.1513 3.2890

67.5' .9758 .0391 2.0884 3.1034

75' 1.0117 -.0172 1. 7215 2.7160

80' 1.0419 -.0180 1.2974 2.3213

85' 1.0779 -.0069 .7362 1.8072

89' 1.1116 -.0003 .1806 1.2919
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40r--------------------~

Ko=37312 -- --
30~----

K
20

1.0

80 9020 30 40 50 60 70

Ijt (deg)

10
O'---...L-------'------'-_.J..-_~_~ __~_ __'____ _.J

o

Fig. 3. K vs '" for c = 10.0. Dashed line represents approximation to half plane with notch cracked at apex.
Limiting values, K. and K.., are given in text.

It will have the asymptotic value, Ko = 3.7312 (for an edge crack of length II, eqn (41», which
should remain relatively constant for '" < 30°. Since a smooth dependence upon angle is
expected, the connecting dashed curve shown for 30° < '" < 60° should give a fair approximation
to the actual stress intensity factor in this range.
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